Jiandi Wan

Jiandi Wan

Position Title
Assistant Professor

Department of Chemical Engineering, College of Engineering

Bainer 3094

Profile Introduction

Dr. Wan recieved his PhD in Chemistry from Boston University and completed his postdoctoral training at Harvard University and Princeton University. His current research interests include cerebral micro-circulation, organ-on-a-chip, and microfluidics.

Research Interests

The broad objective of our research is to explore the dynamics of multi-phase flow at the micro-scale in vascular circulation, tissue engineering, and material synthesis. In particular, our lab has three main research thrusts:

  • Develop novel ex vivo microfluidic approaches and in vivo multi-photon microscopy to investigate cerebral micro-circulation and neurovascular coupling in health and disease

  • Explore stem cell biology and develop novel 3D printing and Organ-on-a-Chip approaches to recapitulate the structure and and function of in vivo systems

  • Investigate microfluidic-based synthesis of advanced functional materials for biomedical therapeutics and applications in energy technology.

The ultimate goals of our research are to advance our fundamental understanding of fluid dynamics in biology, chemistry, and material synthesis and thus to provide ground-breaking technologies, devices, and advanced materials.

Grad Group Affiliations

  • Molecular, Cellular, and Integrative Physiology

Specialties / Focus

  • Cellular Physiology
  • Neurophysiology


  • Winter Quarter: ECH145A  Chemical Engineering Thermodynamics Laboratory

  • Spring Quarter: ECH 145B Chemical Engineering Transport Laboratory


  • PhD in Chemistry, Boston University, 2006
  • MS in Chemistry, Wuhan University, 2001
  • BS in Chemistry, Wuhan University, 1998


Cerebral Micro-circulation and Red Blood Cells
  • Zhou, S., Giannetto, M., DeCourcey, J., Kang, H., Kang, K., Li, Y., Zheng, S., Zhao, H., Simmons, WR., Wei, HS., Bodine, DM., Low, PS., Nedergaard*, M., Wan*, J. (2018) PO2-mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia. Submitted. 
  • Smith, AS., Nowak, RB., Zhou, S., Gokhin, DS., Papoin, J., Ghiran, I., Blanc, L., Wan, J., Fowler*, VM. (2018) Myosin IIA interacts with the spectrin-actin 3 membrane skeleton to control the membrane curvature and deformability of red blood cells. Proc. Nat. Acad. Sci. USA, 115, E4377-85. pdf 
  • Chen, Y., Feng, Y., Wan, J., Chen,* H. (2018) Enhanced Separation of Aged RBCs by Designing Channel Cross Section. Biomicrofluidics. 12, 024106. Promoted as an Editor’s Pick. pdf
  • Zhou, S., Huang, YS., Cyr, KH., Palis, J., Wan,* J. (2017) Microfluidic assay of the deformability of primitive erythroblasts. Biomicrofluidics, 11, 054112. pdf
  • Chen, Y., Li, D., Zhang, C., Li, Y., Wan, J., Li, J., Chen,* H. (2017) Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry. Sci Rep., 7: 15253. pdf
  • Huang, YS., Delgadillo, LF., Cyr, KH., Kingsley, PD., An, X., McGrath, KE., Narla, M., Conboy, JG., Waugh, RE., Wan, J., Palis,* J. (2017) Circulating primitive erythroblasts establish a functional, protein 4.1R-dependent cytoskeletal network prior to enucleating. Sci Rep., 7: 5164. pdf
  • Wei, H., Kang, H., Rasheed, IY., Luo, N., Zhou, S., Lou, N., Gershteyn, A., McConnel, E., Wang, Y., Richardson, K., Palmer, A., Xu, C., Wan,* J., Nedergaard,* M. (2016) Erythrocytes are oxygen-sensing regulators of the cerebral microcirculation. Neuron, 91, 851-862.  pdf
  • Cinar, E., Zhou S., DeCourcey, J., Wang, Y., Waugh, R.E., Wan,* J. (2015) Piezo1 regulates mechanotransductive release of ATP from human red blood cells. ProcNatAcadSci. USA, 112, 11783-11788. pdf
  • Forsyth, A. M., Braunmüller, S., Wan, J., Franke, T., Stone, H. A. (2012) The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release. Microvasc Res. 83, 347-351. pdf
  • Wan, J., Forsyth, A. M., and Stone, H. A. (2011) Red blood cell dynamics: from cell deformation to adenosine-5'-triphosphate release. IntegrBiol. 3, 972-981. Invited Review. pdf
  • Forsyth A. M., Wan, J., Owrutsky, P.D., Abkarian, M., and Stone, H. A. (2011) A multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. ProcNatAcadSci. USA, 108, 10986-10991. pdf
  • Forsyth, A. M., Wan, J., Ristenpart, W. D., and Stone, H. A. (2010) The dynamic behavior of chemically “stiffened” red blood cells in microchannel flowsMicrovasc Res 80, 37-43. pdf
  • Stone, H.A., Forsyth, A. M., and Wan, J. (2009) Slipping through blood flow. Physics, 2, 89. pdf
  • Wan, J., Ristenpart, W. D., and Stone, H. A. (2008) Dynamics of shear-induced ATP release from red blood cells. Proc. Nat. Acad. Sci. USA. 105, 16432-16437. pdf

Organ-on-a-Chip and 3D Printing

  • Piou, M., Fan, R., Darling, E., Cormier, D., Sun,* J., Wan,* J. (2016) Bioprinting cell-laden Matrigel/agarose constructs. J. Biomater Appl., 0885328216669238. pdf
  • Fan, R., Emery, T., Zhang, Y., Xia, Y., Sun,* J., Wan,* J. (2016) Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells. Sci Rep., 6, 27073. pdf
  • Fan, R., Sun, Y., Wan,* J. (2015) Leaf-inspired artificial microvascular networks (LIAMN) for 3D cell culture. RSC Advances5, 90596-90601. pdf
  • Wu, S., Yoon, S., Zhang, Y. G., Lu, R., Xia, Y., Wan, J., Petrof, E. O., Claud, E. C., Sun,* J. (2015) Vitamin D receptor pathway is required for probiotic protection in colitis. Am J Physiol Gastrointest Liver Physiol. 309, G341-9. 
  • Fan, R., Naqvi, K., Patel, K.,  Sun, J., Wan,* J. (2015) Microfluidic generation of oil-free cell-containing hydrogel particles. Biomicrofluidics. 9, 052602. pdf
  • Wan,* J., (2012) Microfluidic-based synthesis of hydrogel particles for cell microencapsulation and cell-based drug delivery. Polymers, 4, 1084-1108. Invited Review. pdf
  • Wan, J., Thomas, M., and Vullev, V. I. (2009) Surface bound proteins with preserved functionality. Ann. Biomed. Eng. 37, 1190-1205. pdf
Microfluidics and Emulsions
  • Fan, R., Chen, X., Wang, Z., Custer, D., Wan,* J. (2017) Flow-regulated growth of titanium dioxide (TiO2) nanotubes in microfluidics. Small, 13, 1701154. (Featured as a frontispiece article). pdf
  • Fan, R., Wan,* J. (2017) Electrode distance regulates the anodic growth of titanium dioxide (TiO2 ) nanotubes. Nanotechnology, 28, 25LT01. pdf
  • Lu, T., Fan, R., Delgadillo, L., Wan,* J. (2016) Stabilization of carbon dioxide (CO2) bubbles in micrometer-diameter aqueous droplets and the formation of hollow microparticles. Lab On Chip. 16, 1587-1592. (Featured as a cover article). pdf
  • Koppula, K. S., Veerapalli, K. R., Fan, R., Wan,* J. (2016) Integrated microfluidic system with simultaneous emulsion generation and concentration. J Colloid Interface Sci.466, 162-167.  pdf
  • Ge, H. Xu, H., Lu, T., Li, J., Chen, H., Wan,* J. (2015) Microfluidic production of porous carbon spheres with tunable size and pores. J Colloid Interface Sci., 461, 168-172. pdf
  • Li, J., Wang, Y., Chen,* H., Wan, J. (2014) Electrowetting on dielectrics for manipulating oil drops and gas bubbles in aqueous-shell compound dropsLab on Chip. 14, 4334-4337. pdf
  • Shim, S., Wan, J., Hilgenfeldt, S., Panchal, P., Stone,* H. A. (2014) Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel. Lab On Chip. 14, 2428–2436. pdf
  • Nunes, J. K., Tsai, S. S. H., Wan, J., Stone,* H. A. (2013) Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis. J. Phys. D: Appl. Phys.46, 114002. pdf
  • Chen, H., Li, J., Wan, J., Weitz, D. A., and Stone,* H. A. (2013) Gas-core triple emulsions for ultrasound triggered release. Soft Matter. 9, 38-42. (Featured as a cover article). pdf
  • Tsai, S. S. H., Wexler, J. S., Wan, J, and Stone,* H. A. (2013) Microfluidic ultralow interfacial tensiometry by magnetic forcing. Lab On Chip13, 119-125.
  • Wan,* J., Shi, L., Benson, B., Bruzek, M. J., Anthony, J. E., Sinko, P. J., Prudhomme, R. K., and Stone,* H. A. (2012) Microfluidic generation of droplets with a high-loading of nanoparticles. Langmuir. 28, 13143–13148. pdf
  • Wan, J., and Stone, H. A. (2012) Coated gas bubbles for the continuous synthesis of hollow inorganic particles. Langmuir28, 37–41. pdf
  • Tsai, S. S. H., Wexler, J. S., Wan, J, and Stone, H. A. (2011) Conformal coating of particles in microchannels by magnetic forcing. Appl. Phys. Lett99, 153509. pdf
  • Chen, H., Zhao, Y., Li, J., Guo, M., Wan, J., Weitz, D. A., Stone, H. A. (2011) Reactions in double emulsions by flow-controlled coalescence of encapsulated drops. Lab On Chip. 11, 2312-2315. pdf
  • Subramaniam, A. B., Wan, J., Gopinath, A., and Stone, H. A. (2011) Semipermeable vesicles composed of natural clay. Soft Matter7, 2600–2612. pdf
  • Wan, J., and Stone, H. A. (2010) Microfluidic generation of a high volume fraction of bubbles in droplets. Soft Matter. 6, 4677-4680. (Featured as a cover article). pdf
  • Wan, J., Bick, A., Sullivan, M., and Stone, H. A. (2008) Controllable microfluidic production of microbubbles in water-in-oil emulsions and the formation of porous microparticles. Adv. Mater20, 3314-3318. pdf
  • Ristenpart, W. D., Wan, J., and Stone, H. A. (2008) Enzymatic reactions in microfluidic devices. Anal. Chem. 80, 3270-3276. pdf
  • Ristenpart, W. D., Kim, P. G., Donmingues, C., Wan, J., and Stone, H. A. (2007) Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99, 234502. pdf
  • Vullev, V. I., Wan, J., Heinrich, V., Landsman, P., Bower, P. E., Xia, B.,  Millare, B., and Jones II, G. (2006) Nonlithographic fabrication of microfluidic devices. J. Am. Chem.  Soc. 128, 16062-16072. pdf
Photochemistry and Chromatography
  • Xia, B., Gerard, B., Solano, D.M., Wan, J., Jones, G., Porco, J. A. (2011) ESIPT-mediated photocycloaddtions of 3-hydroxyquinolinones: development of a fluorescence quenching assay for reaction screening. Org. Lett. 13, 1346–1349.  pdf
  • Hu, J., Xia, B., Bao, D., Ferreira, A., Wan, J., Jones II, G., and Vullev, V. I. (2009) Long-lived photogenerated states of α-oligothiophene-acridinium dyads have triplet character. J. Phys. Chem. A, 113, 3096-3107. pdf
  • Wan, J., Ferreira, A., Xia, W., Chow, C. H., Takechi, K., Kamat, P. V., Jones II, G., and Vullev, V. I. (2008) Solvent dependence of the charge-transfer properties of a quaterthiophene-anthraquinone dyad. J. Photochem. Photobiol. A: Chem. 197, 364-374. pdf
  • Jones II, G., Yan, D., Hu, J., Wan, J., Xia, B., and Vullev, V. I. (2007) Photoinduced electron transfer in arylacridinium conjugates in a solid glass matrixJ. Phys. Chem. B111, 6921 – 6929. pdf
  • Gartner, C. A., Wen, B., Wan, J., Becker, R. S., Jones II, G., Gygi, S. P., and Nelson, S. D. (2005) Photochromic agents as tools for protein structure study: lapachenole is a photoaffinity ligand of cytochrome P450 3A4. Biochemistry, 44, 1846-1855. pdf
  • Wan, J., Feng, Y., Hu, Y., Da, S., and Wang, Z. (2002) Preparation and evaluation of 2, 4, 6-trinitrophenol-modified zirconia-alumina for high performance liquid chromatography and its application in the separation of fullerenes. Chemical Journal of Chinese Universities-Chinese, 23, 1259-1263.
  • Hu, Y., Feng, Y., Wan, J., and Da, S. (2002) Comparison of Lewis acid modified mixed-oxide as chromatographic packings in reversed-phase chromatography. J. Liq. Chrom. & Rel. Technol., 25, 83-99. pdf
  • Hu, Y., Feng, Y., Wan, J., Da, S., and Hu, L. (2001) Native and stearic acid modified ceria-zirconia supports in normal and reversed-phase HPLC. Talanta, 54, 79-88. pdf
  • Wan, J., Feng, Y., Hu, Y., Da, S., and Wang, Z. (2001) Preparation and evaluation of zirconia-alumina composites for high performance liquid chromatography. Chin. J. Anal. Chem.-Chinese 29, 802-805. pdf
  • Wan, J., Feng, Y., Hu, Yu., Da, S., and Wang, Z. (2001) Preparation and evaluation of acid-corroded zirconia-alumina composites as HPLC support. Journal of Analytical Science-Chinese17, 371-374. pdf
  • Wan, J., Feng, Y., Hu, Y., Da, S., and Wang, Z. (2001) Preparation of mesopore zirconia-alumina composite and its application to normal HPLC support. Chemical Journal of Chinese Universities-Chinese22, 1661-1663. pdf