Dr. Lin Tian

Lin Tian

Position Title
Associate Professor

Department of Biochemistry and Molecular Medicine, School of Medicine

4453 Tupper Hall, Davis, CA
University of California, Davis, 4533 Tupper Hall, One Shield Ave, Davis CA 95616

Research Interests

Optical Neurophysiology, Biosensor Engineering, Neural circuitry mapping

Finding an effective treatment for neurological disorders is our ultimate goal in neuroscience. To achieve this goal, we must understand the brain mechanisms that govern physiological processes. The way our lab approaches this goal is to develop ultrasensitive genetically encoded indicators to enable high-resolution, large-scale monitoring of a broad of neural activity, including calcium, neurotransmitter and neuromodulator/peptides. Combined with modern microscopy, these sensors permit precise measurement of neural activity and chemistry on the brain in living animals, with single cell and single synapse resolution in real time.

Grad Group Affiliations

  • Biochemistry, Molecular, Cellular and Developmental Biology
  • Molecular, Cellular and Integrative Physiology
  • Neuroscience
  • Biomedical Engineering

Specialties / Focus

  • Biochemistry
  • Cellular Physiology
  • Developmental Physiology
  • Integrative Physiology
  • Molecular Medicine
  • Molecular Physiology
  • Neurobiology
  • Neurophysiology
  • Stem Cell Biology
  • Structural Biology

Honors and Awards

  • NIH Director’s Innovator Award
  • The Rita Allen Young Scholar
  • Human Frontier Young Investigator Award
  • Individual Biomedical Research Award, The Hartwell Foundation

    Professional Societies

    • Society of Neuroscience
    • Sigma-Xi
    • Frontier in Cellular Neuroscience


    • 2007 Ph.D. Northwestern University


    45)   Andreoni A. Davis C, Tian L, Measuring brain chemistry using genetically encoded fluorescent sensors, Current Opinion in Biomedical Engineering Vol 12: 59-67, 2019

    44)   Lee SJ, Lodder B, Chen Y, Patriarchi T, Tian L, Sabatini B. Cell-type specific asynchronous modulation of PKA by dopamine during reward based learning, BioRxiv, Nov 12, 2019

    43)   Robinson JE, Coughlin GM, Hori AM, Cho JR, Mackey ED, Turan Z, Patriarchi T,  Tian L, Gradinaru V. Optical dopamine monitoring with dLight1 reveals mesolimbic phenotypes in a mouse model of neurofibromatosis type 1. Elife. 2019 Sep 23;8. doi: 10.7554/eLife.48983. 

    42)    Patriarchi T, Cho JR, Merten K, Marley A, Broussard GJ, Liang R, von Zastrow M, Nimmerjahn A, Gradinaru V, Williams JT, Tian L Imaging neuromodulators with high spatiotemporal resolution using genetically encoded indicators, Nature Protocols. 2019

    41)   Augustine V, Ebisu H, Zhao Y, Lee S, Ho B, Mizuno GO, Tian L, Oka Y. Temporally  and Spatially Distinct Thirst Satiation Signals. Neuron. 2019 Jul 17

    40)   Andreoni A, Tian LMaps of neuronal activity across the mouse brain. Nat Biomed Eng. 2019 May;3(5):335-336. doi: 10.1038/s41551-019-0403-6. PubMed PMID: 31073176.

    39)   Mohebi A, Pettibone J, Hamid A, Wong JM, Vinson L, Patriarchi T, Tian L, Kennedy R, Berke J. Dissociable dopamine dynamics for learning and motivation, Nature, 570, 2019 Jun

    38)   de Jong JW, Afjei SA, Pollak Dorocic I, Peck JR, Liu C, Kim CK, Tian L, Deisseroth K, Lammel S. A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System. Neuron. 2019 Jan

    37)   Broussard G, Liang R, Fridman M, Unger E, Meng GH, Xian X, Ji N, Petreanu L, Tian  L, In vivo measurement of afferent activity with axon-specific calcium imaging, Nature Neuroscience, 21, 1272, 2018.

    36)   Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, Xiong WH, Folk RW, Broussard GJ, Liang R, Jang MJ, Zhong H, Dombeck D, von Zastrow M, Nimmerjahn A, Gradinaru V, Williams JT, Tian LUltrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science. 2018 Jun 29;360(6396).  Recommend by F1000.

    35)   Scheerer P, Unger E, Tian LProtein structures guide the design of a much-needed tool for neuroscience. Nature. 2018 Sep

    34)  Broussard G, Unger L, Liang R, Tian L, “Imaging glutamate with genetically encoded    fluorescent sensors”, book chapter, Biochemical approaches for glutamatergic neurotransmission, 117-153, 2018

    33)   Mizuno GO, Wang Y, Shi G, Wang Y, Sun J, Papadopoulos S, Broussard GJ, Unger EK, Deng W, Weick J, Bhattacharyya A, Chen CY, Yu G, Looger LL, Tian LAberrant Calcium Signaling in Astrocytes Inhibits Neuronal Excitability in a Human Down Syndrome Stem Cell Model. Cell Rep. 2018 Jul 10;24(2):355-365.

    32)   Corre J, van Zessen R, Loureiro M, Patriarchi T, Tian L, Pascoli V, Lüscher C. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. Elife. 2018 Oct 

    31)  Patriarchi T, Shen A, He W, Baikoghli M, Cheng R., Xiang Y, Coleman M, Tian L, Nanodelivery of a functional membrane receptor to manipulate cellular phenotype, Scientific Reports 8, 2018

    30)   C. Randy, T. Yann, K. Zsofia, S. Amir, H. Campos, K. Alisha, R. Liu, L. Tian, K. Lam,   Combinatorial Library Screening with Liposomes for Discovery of Membrane Active Peptides, ACS combinatorial Science19 (5),  (2017).

    29)   K. Yao, S. Qiu, L. Tian, W. Snider, J. Flannery, D. Scahffer, B. Chen, Wnt regulates     proliferation and neurogenic potential of Muller Glial cells through a Lin28/let-7 miRNA-dependent pathway in adult mammalian retina, Cell Rep. 17, 2016.

    28)   Y. Gao, G. Broussard, A. Haque, A. Revzin, and L. Tian, Functional imaging of neuron-astrocyte interactions in a compartmentalized microfluidic device, Nature: Microsystems & Nanoengineering 2, (2016).

    27)   Wang Y, Shi G, Miller DJ, Wang Y, Wang C, Broussard G, Wang Y, Tian L, Yu G. Automated Functional Analysis of Astrocytes from Chronic Time-Lapse Calcium Imaging Data. Front Neuroinform. 2017 Jul 14;11:48.

    26)   Y. Zhi, G. Shi, D. J. Miller, G. Broussard, L. Tian*, and G. Yu, Graphical Time Warping for Joint Alighment of Multiple Curves, paper 1815, Neural Information Processing Systems, 2016

    25)   R. Liang, G. Broussard, and L. Tian, Imaging chemical neurotransmission with genetically encoded fluorescent sensors, ACS chemical neuroscience 6, 84-93 (2015).

    24)   L. Qin, M. Fan, D. Candas, G. Jiang, S. Papadopoulos, L. Tian, G. Woloschak, D. J. Grdina, and J. J. Li, CDK1 enhances mitochondrial bioenergetics for radiation-induced DNA repair, Cell reports 13, 2056-2063 (2015).

    23)   G. Broussard, R. Liang, & L. Tian, Monitoring activity in neural circuits with genetically encoded indicators, Frontiers in molecular neuroscience 7, 97 (2014).

    22)   J. Macklin, J. Akerboom, E. R. Schreiter, L. Tian, R. Patel, V. Iyer, B. Karsh, J. Colonell, and T. D. Harris, Two Photon Photophysics of Fluorescent Protein Calcium Indicators, Biophysical Journal 104, 682a (2013).

    21)   J. Akerboom, N. Carreras Calderon, L. Tian, Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics, Frontiers in molecular neuroscience 6, 2 (2013).

    20)   J. Marvin, B. G. Borghuis, L. Tian et al. An optimized fluorescent probe for visualizing glutamate neurotransmission, Nature methods 10, 162-170 (2013).

    19)   L. Tian, Y. Yang, L. M. Wysocki, A. C. Arnold, A. Hu, B. Ravichandran, S. M. Sternson, L. L. Looger, and L. D. Lavis, Selective esterase-ester pair for targeting small molecules with cellular specificity, Proceedings of the National Academy of Sciences 109, 4756-4761 (2012).

    18)   J. Akerboom, T.-W. Chen, T. J. Wardill, L. Tian et al. Optimization of a GCaMP calcium indicator for neural activity imaging. The Journal of neuroscience 32, 13819-13840 (2012).

    17)   D. C. Huber, D. A. Gutnisky, S. Peron, D. H. O‚ Connor, J. S. Wiegert, L. Tian, T. G. Oertner, L. L. Looger, and K. Svoboda,  Multiple dynamic representations in the motor cortex during sensorimotor learning, Nature 484, 473-478 (2012).

    16)  Petreanu L, Gutnisky DA, Huber D, O’Connor H, Xu NL, Tian L, Looger L and Svoboda K, Activity in motor-sensory projections reveals distributed coding in somatosensation., Nature, 489,299-303, 2012.

    15)   L. Tian, S.A. Hires, & L.L. Looger, Imaging neuronal activity with genetically encoded calcium indicators, Cold Spring Harbor Protocols (2012)

    14)   J. Akerboom, L. Tian, J.  Marvin, & L.L. Looger,  Engineering and application of genetically encoded calcium indicators, Genetically Encoded Functional Indicators 125-147 (2012).

    13)   H.A. Zariwala, B. G. Borghuis, T. M. Hoogland, L. Madisen, L. Tian, C. I. De Zeeuw, H. Zeng, L. L. Looger, K. Svoboda, and T.-W. Chen, A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo, The Journal of Neuroscience 32, 3131-3141 (2012).


    Prior to 2012


    12)   B.G. Borghuis, L. Tian, Y. Xu, S. S. Nikonov, N. Vardi, B. V. Zemelman, and L. L. Looger, "Imaging light responses of targeted neuron populations in the rodent retina," The Journal of Neuroscience 31, 2855-2867 (2011).

    11)   T. Knopfel, M. Z. Lin, A. Levskaya, L. Tian, J. Y. Lin, and E. S. Boyden, "Toward the second generation of optogenetic tools," The Journal of Neuroscience 30, 14998-15004 (2010).

    10)   D. A. Dombeck, C. D. Harvey, L. Tian, L. Looger, & D. W. Tank, "Functional imaging of hippocampal place cells at cellular resolution during virtual navigation," Nature neuroscience 13, 1433-1440 (2010).

    9)      L. Tian, S. A. Hires, T. Mao, D. Huber, M. E. Chiappe, S. H. Chalasani, L. Petreanu, J. Akerboom, S. A. McKinney, E. R. Schreiter, C. I. Bargmann, V. Jayaraman, K. Svoboda, L. Looger,  "Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators," Nature methods 6, 875-881 (2009).

    8)      J. Akerboom, J. D. V. Rivera, M. M. R. Guilbe, L. Tian, S. A. Hires, J. S. Marvin, L. L. Looger, and E. R. Schreiter, "Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design," Journal of biological chemistry 284, 6455-6464 (2009).

    7)     S. A. Hires, L. Tian, & L. L. Looger, "Reporting neural activity with genetically  encoded calcium indicators," Brain cell biology 36, 69-86 (2008).

    6)      L. Tian, & L. L. Looger, "Genetically encoded fluorescent sensors for studying healthy and diseased nervous systems," Drug Discovery Today: Disease Models 5, 27-35 (2008).

    5)      L. Tian, & Matouschek, A., "Where to start and when to stop," Nature structural & molecular biology 13, 668-670 (2006).

    4)      L. Tian, R. A. Holmgren, & A. Matouschek, "A conserved processing mechanism regulates the activity of transcription factors Cubitus interruptus and NF-kB," Nature structural & molecular biology 12, 1045-1053 (2005).

    3)      A. Matouschek, S. Prakash, L. Tian, & Mensah, K., "Protein unfolding by the proteasome," FASEB JOURNAL 18(8), C308-C308 (2004).

    2)      S. Prakash, L. Tian, L., K. S. Ratliff, R. E. Lehotzky, & A. Matouschek, "An unstructured initiation site is required for efficient proteasome-mediated degradation," Nature structural & molecular biology 11, 830-837 (2004).

    1)      Q. Wang, L. Tian, Y. Huang, Q. Song, L. He, J. N. Zhou, "Olfactory identification and apolipoprotein E ε4 allele in mild cognitive impairment," Brain research 951, 77-81 (2002).