Research & Discovery

Breeding Plants With Genes From 1 Parent

Scientists are a step closer to breeding plants with genes from only one parent. New research led by plant biologists at the University of California, Davis, published Nov. 19 in Science Advances, shows the underlying mechanism behind eliminating half the genome and could make for easier and more rapid breeding of crop plants with desirable traits such as disease resistance.

Study Highlights Molecular Targets Integral to Breast Cancer Treatment

It’s estimated that over 281,000 women in the U.S. will be diagnosed with breast cancer this year, according to the National Cancer Institute. And about one in seven women will receive a breast cancer diagnosis in their lifetime.

For those with breast cancer gene 2 (BRCA2) mutations, the risk of developing breast cancer is much higher. Between 45 and 69 percent of those with this genetic mutation will develop breast cancer by 70 to 80 years of age. 

Researcher Studying the Microbiome and Chemical Communication of Cats Named a Chancellor’s Postdoctoral Fellow

There are myriad ways to view the world. Some people view it through the lens of art, others through the lens of anthropology or psychology. But Connie Rojas views the world through the lens of biology.

“Everything around you—the tree outside, how tall it is, the bark—everything makes sense  when viewed through the lens of biology,” said Rojas, who was selected to join UC Davis this year as a 2021-2022 Chancellor’s Postdoctoral Fellow. “That type of thinking was very intuitive for me growing up.” 

A Map of Mouse Brain Metabolism in Aging

The first atlas of metabolites in the mouse brain has been published by a team led by UC Davis researchers. The dataset includes 1,547 different molecules across 10 brain regions in male and female laboratory mice from adolescence through adulthood and into advanced old age. The work is published Oct. 15 in the Nature Communications. The complete dataset is publicly available at https://mouse.atlas.metabolomics.us/.

UC Davis Launches Neuroscience Consortium

Last month, the University of California, Davis, officially launched a consortium called the UC Davis Neuroscience Consortium (UCDNC) to leverage the strength, breadth and depth of one of the largest neuroscience communities in the world. The consortium brings together nearly 300 researchers from eleven centers and 41 departments — integrating biologists, chemists, social scientists, engineers, computer scientists and clinicians.

Hippocampus Is the Brain’s Storyteller

People love stories. We find it easier to remember events when they are part of an overarching narrative. But in real life, the chapters of a story don’t follow smoothly one from another. Other things happen in between. A new brain imaging study from the Center for Neuroscience at the University of California, Davis, shows that the hippocampus is the brain’s storyteller, connecting separate, distant events into a single narrative. The work is published Sept. 29 in Current Biology.

Engineers Invent Machine to Shake up UC Davis’ COVID-19 Testing

UC Davis engineers have invented shaking and inversion machines that are a critical part of the UC Davis Genome Center’s award-winning asymptomatic COVID-19 testing. These machines, designed and built by biological and agricultural engineering (BAE) development engineer Dennis Sadowski, professor Stavros Vougioukas and postdoctoral researcher Zhenghao Fei in just six weeks, help treat saliva samples so they can be tested for the virus.

Researchers Identify a Potentially Safer Approach to Opioid Drug Development

Opioids are powerful painkillers but their use is hindered because patients become tolerant to them, requiring higher and higher doses, and overdoses can cause respiratory depression and death. A recent study from researchers at the UC Davis Center for Neuroscience contradicts existing thinking about how opioid drugs cause tolerance and respiratory depression, and suggests a new, balanced approach to developing safer analgesics. The work was published July 13 in Neuropsychopharmacology.

Why Sunflowers Face East

Sunflowers face the rising sun because increased morning warmth attracts more bees and also helps the plants reproduce more efficiently, according to a study by researchers at the University of California, Davis. The results were published Aug. 9 in New Phytologist.

“It’s quite striking that they face east,” said Stacey Harmer, professor of plant biology in the UC Davis College of Biological Sciences and senior author on the paper. “It’s better for them to face east, as they produce more offspring.”

Evolutionary Thinking

We watch a ball as it falls into our glove. We hear a strange sound in another part of the house and listen intently. In neuroscience, the act of narrowing our senses in response to an environmental event is called “attention,” and it is understood that when we attend to a stimulus, we lose the ability to focus on other surrounding inputs.

Interrupting the Development of Cancer Cells

Think of chromosomes as nature’s shoelaces. Built from DNA, these thread-like structures carry and ferry the genetic information necessary for life. To maintain genetic integrity, chromosomes possess protective structures located at their ends called telomeres. These telomeres are like the plastic tips of shoelaces, preventing the genetic thread from unraveling as cells continuously divide.

Drought Changes Root Microbiome

Drought can have a lasting impact on the community of microbes that live in and around roots of rice plants, a team led by UC Davis researchers has found. Root-associated microbes help plants take up nutrients from the soil, so the finding could help in understanding how rice responds to dry spells and how it can be made more resilient to drought. The work was published July 22 in Nature Plants.

$1 Million Keck Foundation Grant Backs Research to "Build a Brain"

A team of scientists from UC Davis and Rice University are starting small as they begin to figure out how to build an artificial brain from the bottom up.

Celina Juliano, an associate professor in the Department of Molecular and Cellular Biology, and Jacob Robinson of Rice University’s Brown School of Engineering have won a $1 million Keck Foundation grant to advance the team’s synthetic neurobiology effort to define the connections between neurons and muscles that drive programmed behaviors in living animals.