Chang-il Hwang

Chang-il Hwang

Position Title
Assistant Professor

  • Department of Microbiology and Molecular Genetics, College of Biological Sciences
241B Briggs Hall

Research Interests

Genetic and Epigenetic Alterations in Pancreatic Cancer Progression

The Hwang lab studies how genetic and epigenetic alterations contribute to pancreatic cancer progression, and exploits epigenetic vulnerabilities in cancer therapeutics. Dr. Hwang has established pancreatic organoid models of human and mouse pancreatic cancer and utilized these models for understanding epigenetic landscape of disease progression.

Grad Group Affiliations

  • Biochemistry, Molecular, Cellular and Developmental Biology (BMCDB)
  • Integrative Genetics and Genomics (IGG)
  • Graduate Group in Integrative Pathobiology (GGIP)


  • Animal Genomics
  • Cancer Biology
  • Epigenomics
  • Genomics, Proteomics and Metabolomics
  • Gene Regulation
  • Human Genetics and Genomics
  • Model Organism Genetics


  • MIC175 Biology of Cancer (Spring quarter)
  • BIS10 Everyday Biology (Spring quarter)


  • Ph.D., Cornell University, Ithaca, NY
  • M.S., Seoul National University, Seoul, South Korea
  • D.V.M., Seoul National University, Seoul, South Korea


  • The NCI Transition Career Development Award (K22)
  • Ruth L. Kirschstein National Research Service Award (NRSA) F32 Postdoctoral Fellowship Award
  • New York Korean Biologists (NYKB) Award
  • Synthego Genome Engineer Innovation Award
  • NIH/NCI R37 MERIT Award


*Wang SS, *Xu J, Ji KY, Hwang CIEpigenetic Alterations in Pancreatic Cancer Metastasis. Biomolecules. 2021 Jul 22;11(8):1082. doi: 10.3390/biom11081082. * Equal contribution.

Kim HR, Yim J, Yoo HB, Lee SE, Oh S, Jung S, Hwang CI, Shin DM, Kim T, Yoo KH, Kim YS, Lee HW, Roe JS. EVI1 activates tumor-promoting transcriptional enhancers in pancreatic cancer. NAR Cancer. 2021 Jun 17;3(2):zcab023. doi: 10.1093/narcan/zcab023. eCollection 2021 Jun.

Nielsen SR, Strøbech JE, Horton ER, Jackstadt R, Laitala A, Bravo MC, Maltese G, Jensen ARD, Reuten R, Rafaeva M, Karim SA, Hwang CI, Arnes L, Tuveson DA, Sansom OJ, Morton JP, Erler JT. Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade. Nat Commun. 2021 Jun 7;12(1):3414. doi: 10.1038/s41467-021-23731-7.

Miyabayashi K, Baker LA, Deschenes A, Traub B, Caligiuri G, Plenker D, Alagesan B, Belleau P, Li S, Kendall J, Jang GH, Kawaguchi RK, Somerville TDD, Tiriac H, Hwang CI, Burkhart RA, Roberts NJ, Wood LD, Hruban RH, Gillis J, Krasnitz A, Vakoc CR, Wigler M, Notta F, Gallinger S, Park Y, Tuveson DAIntraductal transplantation models of human pancreatic ductal adenocarcinoma reveal progressive transition of molecular subtypes. Cancer Discov. 2020 Jul 23:CD-20-0133. doi: 10.1158/2159-8290.CD-20-0133. Online ahead of print.

Oni TE, Biffi G, Baker LA, Hao Y, Tonelli C, Somerville TDD, Deschênes A, Belleau P, Hwang CI, Sánchez-Rivera FJ, Cox H, Brosnan E, Doshi A, Lumia RP, Khaledi K, Park Y, Trotman LC, Lowe SW, Krasnitz A, Vakoc CR, Tuveson DA. SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. J Exp Med. 2020 Sep 7;217(9):e20192389. doi: 10.1084/jem.20192389.

Ponz-Sarvise, M., Corbo, V., Tiriac, H., Engle, D.D., Fress, K.K., Oni, T.E., Hwang, C.I., Öhlund, D., Chio, I.I.C., Baker, L.A., et al. (2019). Identification of Resistance Pathways Specific to Malignancy Using Organoid Models of Pancreatic Cancer. Clin Cancer Res. 2019 Sep 6. pii: clincanres.1398.2019. doi: 10.1158/1078-0432.CCR-19-1398. [Epub ahead of print]

Öhlund, D., Handly-Santana, A., Biffi, G., Elyada, E., Almeida, A.S., Ponz-Sarvise, M., Corbo, V., Oni, T.E., Hearn, S.A., Lee, E.J., et al. (2017). Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214, 579–596.

*Roe, J.-S., *Hwang, C.-I., Somerville, T.D.D., Milazzo, J.P., Lee, E.J., Da Silva, B., Maiorino, L., Tiriac, H., Young, C.M., Miyabayashi, K., et al. (2017). Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 170, 875–888.e20. *co-first author

*Hwang, C.-I., *Boj, S.F., Clevers, H., and Tuveson, D.A. (2016). Preclinical models of pancreatic ductal adenocarcinoma. J Pathol 238, 197–204. *co-first author

*Boj, S.F., *Hwang, C.-I., Baker, L.A., Engle, D.D., Tuveson, D.A., and Clevers, H. (2016). Model organoids provide new research opportunities for ductal pancreatic cancer. Molecular & Cellular Oncology 3, e1014757. *co-first author

*Boj, S.F., *Hwang, C.-I., *Baker, L.A., *Chio, I.I.C., *Engle, D.D., *Corbo, V., *Jager, M., Ponz-Sarvise, M., Tiriac, H., Spector, M.S., et al. (2015). Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338. *co-first author

Cheng, C.-Y., Hwang, C.-I., Corney, D.C., Flesken-Nikitin, A., Jiang, L., Oner, G.M., Munroe, R.J., Schimenti, J.C., Hermeking, H., and Nikitin, A.Y. (2014). miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep 6, 1000–1007.

Flesken-Nikitin, A., Hwang, C.-I., Cheng, C.-Y., Michurina, T.V., Enikolopov, G., and Nikitin, A.Y. (2013). Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature 495, 241–245.

Gu, X., Vedvyas, Y., Chen, X., Kaushik, T., Hwang, C.-I., Hu, X., Nikitin, A.Y., and Jin, M.M. (2012). Novel strategy for selection of monoclonal antibodies against highly conserved antigens: phage library panning against ephrin-B2 displayed on yeast. PLoS ONE 7, e30680.

Hwang, C.-I., Choi, J., Zhou, Z., Flesken-Nikitin, A., Tarakhovsky, A., and Nikitin, A.Y. (2011). MET-dependent cancer invasion may be preprogrammed by early alterations of p53-regulated feedforward loop and triggered by stromal cell-derived HGF. Cell Cycle (Georgetown, Tex.) 10, 3834–3840.

Hwang, C.-I., Matoso, A., Corney, D.C., Flesken-Nikitin, A., Körner, S., Wang, W., Boccaccio, C., Thorgeirsson, S.S., Comoglio, P.M., Hermeking, H., et al. (2011). Wild-type p53 controls cell motility and invasion by dual regulation of MET expression. Proc Natl Acad Sci U S A 108, 14240–14245.

*Corney, D.C., *Hwang, C.-I., Matoso, A., Vogt, M., Flesken-Nikitin, A., Godwin, A.K., Kamat, A.A., Sood, A.K., Ellenson, L.H., Hermeking, H., et al. (2010). Frequent downregulation of miR-34 family in human ovarian cancers. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 16, 1119–1128. *co-first author

Lee, H.-Y., Youn, S.-W., Kim, J.-Y., Park, K.-W., Hwang, C.-I., Park, W.-Y., Oh, B.-H., Park, Y.-B., Walsh, K., Seo, J.-S., et al. (2008). FOXO3a turns the tumor necrosis factor receptor signaling towards apoptosis through reciprocal regulation of c-Jun N-terminal kinase and NF-kappaB. Arterioscler Thromb Vasc Biol 28, 112–120.

Kim, S.-H., Hwang, C.-I., Juhnn, Y.-S., Lee, J.-H., Park, W.-Y., and Song, Y.-S. (2007). GADD153 mediates celecoxib-induced apoptosis in cervical cancer cells. Carcinogenesis 28, 223–231.

Lee, M.S., Jun, D.-H., Hwang, C.-I., Park, S.S., Kang, J.J., Park, H.-S., Kim, J., Kim, J.H., Seo, J.-S., and Park, W.-Y. (2006). Selection of neural differentiation-specific genes by comparing profiles of random differentiation. Stem Cells 24, 1946–1955.

Kang, M.J., Chung, Y.H., Hwang, C.I., Murata, M., Fujimoto, T., Mook-Jung, I.H., Cha, C.I., and Park, W.Y. (2006). Caveolin-1 upregulation in senescent neurons alters amyloid precursor protein processing. Exp Mol Med 38, 126–133.

Kim, J.H., Ha, I.S., Hwang, C.-I., Lee, Y.-J., Kim, J., Yang, S.-H., Kim, Y.S., Cao, Y.A., Choi, S., and Park, W.-Y. (2004). Gene expression profiling of anti-GBM glomerulonephritis model: the role of NF-kappaB in immune complex kidney disease. Kidney Int 66, 1826–1837.

Seol, J.Y., Park, K.-H., Hwang, C.-I., Park, W.-Y., Yoo, C.-G., Kim, Y.W., Han, S.K., Shim, Y.-S., and Lee, C.-T. (2003). Adenovirus-TRAIL can overcome TRAIL resistance and induce a bystander effect. Cancer Gene Ther 10, 540–548.

Park, W.-Y., Hwang, C.-I., Im, C.-N., Kang, M.-J., Woo, J.-H., Kim, J.-H., Kim, Y.S., Kim, J.-H., Kim, H., Kim, K.-A., et al. (2002). Identification of radiation-specific responses from gene expression profile. Oncogene 21, 8521–8528.

Park, W.Y., Hwang, C.I., Kang, M.J., Seo, J.Y., Chung, J.H., Kim, Y.S., Lee, J.H., Kim, H., Kim, K.A., Yoo, H.J., et al. (2001). Gene profile of replicative senescence is different from progeria or elderly donor. Biochem Biophys Res Commun 282, 934–939.