Stacey A. Combes

Stacey Combes

Position Title
Associate Professor

Department of Neurobiology, Physiology and Behavior, College of Biological Sciences

155A Hutchison Hall

Profile Introduction

Research in the Combes Lab focuses on the physical interaction between flying insects and their environment, and on how physiology, morphology and behavior contribute to the performance of ecologically relevant flight behaviors. Our work combines lab-based flight biomechanics with field-based insect ecology to understand the physical foundations of diverse, natural flight behaviors. Projects in the lab explore topics such as flexible wing morphology, the mechanics of aerial predator-prey interactions, flight through cluttered environments, causes and consequences of wing damage, and the effects of turbulent airflow on flight stability.

Research Interests

MORPHOLOGY AND FLIGHT CONTROL: Flexible wing morphology and secondary control structures in insect flight

AERIAL INTERACTIONS: Biomechanics and behavior during aerial predator-prey and aggressive interactions

FLIGHT IN COMPLEX PHYSICAL ENVIRONMENTS: Maneuvering flight through clutter; collisions and consequences of insect wing damage

FLIGHT IN TURBULENCE AND UNSTEADY FLOW: Effects of environmental turbulence on insect flight performance and movement patterns

Grad Group Affiliations

  • Animal Behavior
  • Entomology
  • Ecology


  • NPB 102 Animal Behavior, Spring 2016, Fall 2016, Fall 2017, Fall 2018, Spring 2019, Fall 2019

Honors and Awards

  • U.C. Davis Chancellor's Fellowship, 2019-2024
  • Roslyn Abramson Award for excellence and sensitivity in teaching undergraduates, Harvard University, 2014
  • Certificate of Teaching Excellence, Derek Bok Center for Teaching and Learning, Harvard University, 2013
  • NSF Early Faculty Development (CAREER) Award, 2013
  • Miller Institute post-doctoral research fellowship, U.C. Berkeley, 2004-2007

    Professional Societies

    • Society for Integrative and Comparative Biology (SICB)
    • American Association for the Advancement of Science (AAAS)


    • 2002 PhD Zoology University of Washington
    • 1994 B.A. Integrative Biology University of California, Berkeley


    Burnett, N.P. and Combes, S.A. (2019).  Post-doc interviews in the life sciences: An often-overlooked process that is susceptible to bias.  Integrative Organismal Biology 1(1): obz027.

    Switzer, C.M., Russell, A.L., Papaj, D.R., Combes, S.A., and Hopkins, R. (2019).  Sonicating bees demonstrate flexible pollen extraction without instrumental learning.  Current Zoology 65(4): 425–436.

    Crall, J.D., Switzer, C.M., Oppenheimer, R.L., Ford Versypt, A.N., Dey, B., Brown, A., Eyster, M., Guérin, C., Pierce, N.E., Combes, S.A., and de Bivort, B.L. (2018).  Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation.  Science 362(6415): 683-686.

    Ortega-Jiménez, V.M. and Combes, S.A. (2018).  Living in a trash can: turbulent convective flows impair Drosophila flight performance.  Journal of the Royal Society Interface 15(147): 20180636.

    Crall, J.D., Gravish, N., Mountcastle, A.M., Kocher, S.D., Oppenheimer, R.L., Pierce, N.E., and Combes, S.A. (2018).  Spatial fidelity of workers predicts collective response to disturbance in a social insect.  Nature Communications 9:1201.

    Switzer, C.M., Combes, S.A., and Hopkins, R. (2018).  Dispensing Pollen Via catapult: Explosive Pollen Release in Mountain Laurel (Kalmia latifolia).  American Naturalist 191(6): 767-776.

    Peters, J.M., Gravish, N., and Combes, S.A. (2017).  Wings as impellers: honey bees co-opt flight system to induce nest ventilation and disperse pheromones.  Journal of Experimental Biology 220(12): 2203-2209.

    Crall, J.D., Chang, J.J., Oppenheimer, R.L., and Combes, S.A. (2017).  Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence.  Interface Focus 7(1): 20160086. DOI: 10.1098/rsfs.2016.0086

    Mistick, E.A., Mountcastle, A.M., and Combes, S.A. (2016).  Wing flexibility improves bumblebee flight stability.  J. Exp. Biol. 219(21): 3384-3390.  DOI: 10.1242/jeb.133157

    Chang, J.J., Crall, J.D. and Combes, S.A. (2016).  Wind alters landing dynamics in bumblebees.  J. Exp. Biol. 219(18): 2819-2822.  DOI: 10.1242/jeb.137976

    Switzer, C.M. and Combes, S.A. (2016).  Bumblebee sonication behavior changes with plant species and environmental conditions.  Apidologie,  DOI: 10.1007/s13592-016-0467-1

    Switzer, C.M. and Combes, S.A. (2016).  Bombus impatiens (Hymenoptera: Apidae) display reduced pollen foraging behavior when marked with bee tags vs. paint.  J. Mellitology 62: 1-13.  DOI:

    Switzer, C.M. and Combes, S.A. (2016).  The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50.  Ecotoxicology 25(6): 1150-1159.  DOI: 10.1007/s10646-016-1669-z

    Mountcastle, A.M., Alexander, T.M., Switzer, C. M., and Combes, S.A. (2016).  Wing wear reduces bumblebee flight performance in a dynamic obstacle course. Biol. Lett. 12(6):  20160294.  DOI: 10.1098/rsbl.2016.0294

    Switzer, C.M., Hogendoorn, K., Ravi, S., and Combes, S.A. (2016).  Shakers and head bangers: differences in sonication behavior between Australian Amegilla murrayensis (blue-banded bees) and North American Bombus impatiens (bumblebees).  Arthopod Plant Interact., published on-line 12/1/15.  DOI: 10. 1007/ s11829-015-9407-7

    Mountcastle, A.M., Ravi, S., and Combes, S.A. (2015).  Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees.  Proc. Nat. Acad. Sci. US  112(33): 10527-10532. DOI: 10.1073/pnas.1506126112 

    Crall, J.D., Ravi, S., Mountcastle, A.M., and Combes, S.A. (2015).  Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration. J. Exp. Biol. 218(17): 2728-2737.  DOI: 10.1242/jeb.121293

    Crall, J.D., Gravish, N., Mountcastle, A.M., and Combes, S.A. (2015).  BEEtag: a low-cost, image based tracking system for the study of animal behavior and locomotionPLoS One 10(9): e0136487.  DOI: 10.1371/journal.pone.0136487

    Gravish, N., Peters, J.M., Combes, S.A. and Wood, R.J. (2015).  Collective flow enhancement by tandem flapping wings.  Phys. Rev. Lett. 115(18): 188101.  DOI: 10.1103/PhysRevLett.115.188101

    Ravi, S., Crall, J.D., McNeilly, L., Gagliardi, S.F., Biewener, A.A. and Combes, S.A. (2015).  Hummingbird flight stability and control in freestream turbulent winds.  J. Exp. Biol. 218: 1444-1452.  DOI: 10.1242/ jeb.114553

    Hedrick, T.L., Miller, L.A. and Combes, S.A. (2015).  Recent developments in the study of insect flight. Can. J. Zool. 93: 925-943.  DOI: 10.1139/cjz-2013-0196

    Mountcastle, A.M. and Combes, S.A. (2014).  Biomechanical strategies for mitigating collision damage in insect wings: structural design versus embedded elastic materials.  J. Exp. Biol. 217: 1108-1115. DOI: 10.1242/ jeb.092916

    Combes, S.A. (2014).  Neuroscience: Dragonflies predict and plan their hunts.  Invited News & Views article summarizing paper by Misciati, Lin, et al.  Nature 517: 279-280.  DOI: 10.1038/ nature14078 

    Ravi, S., Crall, J., Fisher, A. and Combes, S. (2013). Rolling with the flow: Bumblebees flying in unsteady wakes. J. Exp. Biol. 216: 4299-4309.  DOI: 10.1242/jeb.090845

    Mountcastle, A.M. and Combes, S.A. (2013).  Wing flexibility enhances load-lifting capacity in bumblebees.  Proc. Roy. Soc. B 280: 20130531.  DOI: 10.1098/rspb.2013.0531

    Combes, S.A., Salcedo, M.K., Pandit, M.M. and Iwasaki, J.M. (2013).  Capture success and efficiency of dragonflies pursuing different types of prey.  Integr. Comp. Biol. 53(5): 787-798.  DOI: 10.1093/icb/ict072

    Combes, S.A., Rundle, D.E., Iwasaki, J.M. and Crall, J.D. (2012).  Linking biomechanics and ecology through predator-prey interactions: Flight performance of dragonflies and their prey.  J. Exp. Biol. 215: 903-913.  DOI: 10.1242/ jeb.059394

    Donoughe, S.T., Crall, J.D., Merz, R.A. and Combes, S.A. (2011).  Resilin in dragonfly and damselfly wings and its implications for wing flexibility.  J. Morph. 272(12): 1409-1421.  DOI: 10.1002/ jmor.10992

    Combes, S.A., Crall, J.D. and Mukherjee, S. (2010).  Dynamics of animal movement in an ecological context: Dragonfly wing damage reduces flight performance and predation success. Biol. Lett. 6(3): 426-429.  DOI: 10.1098/rsbl.2009.0915

    Combes, S.A. (2010). Materials, structure, and dynamics of insect wings as bioinspiration for MAVs.  In Encyclopedia of Aerospace Engineering, Vol. 7 (Vehicle Design).  John Wiley & Sons, UK.  DOI: 10.1002/9780470686652.eae404

    Combes, S.A. and Dudley, R. (2009).  Turbulence-driven instabilities limit insect flight performance.  Proc. Nat. Acad. Sci. US 106(22): 9105-9108.  DOI: 10.1073/pnas.0902186106

    Shang, J.K., Combes, S.A., Finio, B.M. and Wood, R.J. (2009).  Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.  Bioinsp. & Biomim. 4(3): 036002.  DOI: 10.1088/1748-3182/4/3/036002        

    Combes, S.A. and Daniel, T.L. (2003).  Flexural stiffness in insect wings.  I. Scaling and the influence of wing venation.  J. Exp. Biol. 206(17): 2979-2987.  DOI: 10.1242/ jeb.00523

    Combes, S.A. and Daniel, T.L. (2003).  Flexural stiffness in insect wings.  II.  Spatial distribution and dynamic wing bending.  J. Exp. Biol. 206(17): 2989-2997.  DOI: 10.1242/ jeb.00524

    Combes, S.A. and Daniel, T.L. (2003).  Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sextaJ. Exp. Biol. 206(17): 2999-3006.  DOI: 10.1242/ jeb.00502

    Daniel, T.L. and Combes, S.A. (2002).  Flexible wings and fins: bending by inertial or fluid-dynamic forces?  Int. Comp. Biol. 42(5): 1044-1049.  DOI: 10.1093/icb/42.5.1044

    Combes, S.A. and Daniel, T.L. (2001). Shape, flapping and flexion: Wing and fin design for forward flight.  J. Exp. Biol. 204(12): 2073- 2085.