Su-Ju Lin

Su-Ju Lin

Position Title

  • Department of Microbiology and Molecular Genetics, College of Biological Sciences

Research Interests

Research in my laboratory is currently focused on understanding the interaction between NAD+ homeostasis and calorie restriction (CR)-related nutrient sensing pathways, and their regulation in budding yeast Saccharomyces cerevisiae. The main goal of our research is to utilize the genetically tractable yeast S. cerevisiae to identify factors that regulate NAD+ homeostasis and longevity pathways. Understanding the mechanisms of these molecular processes in yeast may provide clues to the molecular basis of human aging and age-associated diseases.

Regulation of NAD+ homeostasis and cellular life span


Grad Group Affiliations

  • Biochemistry, Molecular, Cellular and Developmental Biology (BMCDB)
  • Integrative Genetics and Genomics (IGG)
  • Microbiology (MGG)


  • MIC 170 Yeast Molecular Genetics, Spring
  • BIS 104 Regulation of cell function, Winter
  • MIB 200A Microbial Biology, Fall
  • MIC 190c/MIC 199 Research credit, Fall, Winter, Spring, Summer


  • 323, 325 Briggs hall
    • Graduate students:  Benjamin Groth (MGG)
    • Postdoc: Dr. Padmaja Venkatakrishnan
    • Jr Specialist: Chi-Chun Annie Huang
    • Undergraduate researcher/assistant: Matilda Mcdaniel, Jaina Jogia, Annika Lee, Ching- Hsuan Chen

Honors and Awards

  • 1997-1998 Anna Fuller Fund for Cancer Research Fellowship
  • 1999-2002 Individual National Research Service Award
  • 2004-2008 Ellison Medical Foundation New Scholar in Aging

    Professional Societies

    • Genetic Society of America
    • The American Society for Biochemistry

    Education and Degrees

    • 1997 PhD Toxicological Sciences, Johns Hopkins University
    • 1991 BA Public Health, National Taiwan University
    • 2003 Biology Postdoctoral Fellow Massachusetts Institute of Technology


    S. -J. Lin, P. Defossez and L. Guarente. (2000) Life span extension by calorie restriction in S. cerevisiae requires SIR2 and NAD. Science 289:2126-8.

    S. -J. Lin, M. Kaeberlein, A. A. Andalis, L. A. Sturtz, P.-A. Defossez, V. C. Culotta, G. R. Fink and L. Guarente (2002) Calorie restriction extends life span by shifting carbon toward respiration. Nature 418:344-348.

    S. -J. Lin and L. Guarente (2003) NAD, a metabolic regulator of transcription, longevity and diseases. Current Opinion in Cell Biology 15:241-246.

    S. -J. Lin, E. Ford, M. Haigis, G. Liszt and L. Guarente (2004) Calorie restriction extends life span by lowering the NADH levels. Genes and Development 18:12-16.

    D. Lamming, M. Latorre, O. Medvedik, S. N. Wong, F. A. Tsang, C. Wang, S.-J. Lin* and D. A. Sinclair* (2005) HST2 mediates SIR2-independent lifespan extension by calorie restriction. Science 309:1861-64

    L. Bordone, M. C. Motta, F. Picard, A. Robinson, U. S. Jhala, J. Apfeld, T. McDonagh, M. Lemieux, M. McBurney, E. J. Easlon, S.-J. Lin, and L. Guarente (2005) Sirt1 Regulates Insulin Secretion by Repressing UCP2 in Pancreatic ?-cells. PLoS Biol 4(2):e31.

    S. -J. Lin (2006) Molecular Mechanisms of Longevity regulation and calorie restriction. In Nutritional Genomics (Editors: J. Kaput and R. L Rodriguez), pp207-219. John Wiley and Sons, Inc., Hoboken, New Jersey.

    S. -J. Lin and L. Guarente (2006) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 2, e33

    D. A. Sinclair, S. -J. Lin and L. Guarente (2006) Life-span extension in yeast. Science 312, 195-197.

    E. Easlon, F. Tsang, I. Dilova, C. Wang, S-P Lu, C. Skinner and S-J Lin. (2007) The Dihydrolipoamide Acetyltransferase Is A Novel Metabolic Longevity Factor And Is Required For Calorie Restriction Mediated Life Span Extension. J. Biol.Chem. 282:6161-71

    I. Dilova, E. Easlon and S.-J. Lin (2007) Calorie Restriction and the Nutrient Sensing Signaling Pathways. Cell Mol Life Sci, 64:752-767.

    S. -J. Lin and D. Sinclair (2008) Molecular mechanism of aging - insights from yeast. In The Molecular Biology of Aging (Editors: L. Guarente, L. Partridge, and D.Wallace), pp483-516. Cold Spring Harbor Laboratory Press

    E. Easlon, F. Tsang, C. Skinner, C. Wang and S-J Lin (2008) The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction mediated life span extension in yeast. Genes and Development 22:931-944

    D. Chen, J. Bruno, E. Easlon, S.-J. Lin, F. Alt and L. Guarente (2008) Tissue-specific Regulation of SIRT1 by Calorie Restriction. Genes and Development 22:1753-7

    J. L. Sporty, Md. M. Kabir, K. W. Turteltaub, T. Ognibene, S.-J. Lin, and G. Bench. (2008) Single sample extraction protocol for quantification of NAD and NADH redox states in Saccharomyces cerevisiae. Journal of Separation Science 31:3202-3211

    D. Chen, A. D. Steele, G. Hutter, J. Bruno, A. Govindarajan, E. Easlon, S.-J. Lin, A. Aguzzi, S. Lindquist and L. Guarente (2008) Calorie Restriction and SIRT1 Depletion Delay the Onset of Prion Disease. Experimental Gerontology 43:1086-1093

    J. Sporty, S. J. Lin, M. Kato, T. Ognibene, B. Stewart, K. Turteltaub, and G. Bench (2009) Quantitation of NAD(+) biosynthesis from the salvage pathway in Saccharomyces cerevisiae. Yeast. (PMID: 19399913)

    S. P. Lu, M. Kato, and S. J. Lin (2009) Assimilation of Endogenous Nicotinamide Riboside Is Essential for Calorie Restriction-mediated Life Span Extension in Saccharomyces cerevisiae. J Biol Chem 284:17110-9. (PMID: 19416965)

    C. Wang, C. Skinner, E. Easlon and S. -J. Lin (2009) Deleting the 14-3-3 Protein Bmh1 Extends Life Span in Saccharomyces cerevisiae by Increasing Stress Response. Genetics 183:1373-84. (PMID:19805817)

    S.-P. Lu and S.-J. Lin (2010) Regulation of Yeast Sirtuins by NAD+ Metabolism and Calorie Restriction. Biochim Biophys Acta 1804:1567-1575 (PMC2886167)

    C. Skinner and S. J. Lin (2010) Effects of calorie restriction on life span of microorganisms. Appl Microbiol Biotechnol. 88: 817-28. (PMC2944023)

    B. Li, C. Skinner, P. Castello, M. Kato, E. Easlon, L. Xie, T. Li, S. P. Lu, C. Wang, F. Tsang, R. Poyton and S.-J. Lin (2011) Identification of potential calorie restriction-mimicking yeast mutants with increased mitochondrial respiratory chain and nitric oxide levels. Journal of Aging Research 2011:673185. (PMC3092605)

    Lu S. P. and S. -J. Lin (2011) Phosphate responsive signaling pathway is a novel component of NAD+ metabolism in Saccharomyces cerevisiae. J. Biol Chem. 286:14271-81. (PMC3077628).

    C. Skinner and S. -J. Lin (2012) Calorie Restriction, Mitochondria and Longevity in Saccharomyces cerevisiae. In Mitochondrial Signaling in Health and Disease (Oxidative Stress and Disease), pp301-320 (Editors: Sten Orrenius, Lester Packer and Enrique Cadenas)

    S. -J. Lin and N. Austriaco (2013) Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Res. doi: 10.1111/1567-1364.12113.

    M. Kato and S.-J. Lin (2014) Ycl047c/Pof1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae. J. Biol Chem 289:15577-15587.

    M. Kato and S.-J. Lin (2014) Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 23:49-58.

    F. Tsang, C. James, M. Kato, V. Myers, I. Ilyas, M. Tsang and S.-J. Lin (2015) Reduced Ssy1-Ptr3-Ssy5 (SPS) signaling Extends Replicative Life Span by Enhancing NAD+ Homeostasis in Saccharomyces cerevisiae. J Biol Chem.  290(20):12753-64.

    Tsang F. and Lin S.-J. (2015) Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity. Front Biol 10(4):333-357.

    Croft T, James Theoga Raj C, Salemi M, Phinney BS, Lin SJ. (2018) A functional link between NAD+ homeostasis and N-terminal protein acetylation in Saccharomyces cerevisiae. J Biol Chem. 293(8):2927-2938.

    James Theoga Raj C, Croft T, Venkatakrishnan P, Groth B, Dhugga G, Cater T, Lin SJ. (2019) The copper-sensing transcription factor Mac1, the histone deacetylase Hst1, and nicotinic acid regulate de novo NAD+ biosynthesis in budding yeast. J Biol Chem. 294(14):5562-5575.

    James Theoga Raj C, Lin SJ. (2019) Cross-talk in NAD+ metabolism: insights from Saccharomyces cerevisiae. Curr Genet.  65(5):1113-1119.

    Croft T, Venkatakrishnan P, Lin SJ. (2020) NAD+ Metabolism and Regulation: Lessons From Yeast. Biomolecules. 10(2). doi: 10.3390/biom10020330. Review.

    Croft T, Venkatakrishnan P, James Theoga Raj C, Groth B, Cater T, Salemi MR, Phinney B, Lin SJ. (2020) N-terminal protein acetylation by NatB modulates the levels of Nmnats, the NAD+ biosynthetic enzymes in Saccharomyces cerevisiae. J Biol Chem.  295(21):7362-7375.

    Groth B, Venkatakrishnan P, Lin SJ. (2021) NAD+ Metabolism, Metabolic Stress, and Infection. Front Mol Biosci. 8:686412.