Plant Biology

How Plants Sense Scent

Plants need to be able to communicate with themselves—by sending signals from their leaves to their roots to their flowers—so that they can coordinate growth and optimize resource use. They also need to communicate with other plants and organisms, which they achieve by releasing volatile organic compounds (VOCs), tiny molecules that are often associated with distinct smells. Scientists know a lot about how plants emit these odorous signals, however very little is known about how they receive and interpret them.

Plant Biologists Identify Promising New Fungicides

A promising new fungicide to fight devastating crop diseases has been identified by researchers at the University of California, Davis. The chemical, ebselen, prevented fungal infections in apples, grapes, strawberries, tomatoes and roses, and improved symptoms of pre-existing fungal infection in rice.

How Tomato Plants Use Their Roots to Ration Water During Drought

Plants have to be flexible to survive environmental changes, and the adaptive methods they deploy must often be as changeable as the shifts in climate and condition to which they adapt. To cope with drought, plant roots produce a water-repellent polymer called suberin that blocks water from flowing up towards the leaves, where it would quickly evaporate. Without suberin, the resulting water loss would be like leaving the tap running.

How Sunflowers See the Sun

Sunflowers famously turn their faces to follow the sun as it crosses the sky. But how do sunflowers “see” the sun to follow it? New work from plant biologists at the University of California, Davis, published Oct. 31 in PLOS Biology, shows that they use a different, novel mechanism from that previously thought.

“This was a total surprise for us,” said Stacey Harmer, professor of plant biology at UC Davis and senior author on the paper.

Chloroplasts Do More Than Photosynthesis; They’re Also a Key Player In Plant Immunity

Scientists have long known that chloroplasts help plants turn the sun’s energy into food, but a new study, led by researchers in the Department of Plant Biology, shows that they’re also essential for plant immunity to viral and bacterial pathogens.

Chloroplasts are generally spherical, but a small percentage of them change their shape and send out tube-like projections called “stromules.” First observed over a century ago, the biological function of stromules has remained enigmatic.

Two CBS Plant Biologists Elected to National Academy of Sciences

Three professors from the University of California, Davis, have been elected as members of the National Academy of Sciences. They are among 120 new members and 23 international members announced by the academy May 2. Members are elected in recognition of their contributions to original research. Membership in the academy is considered one of the highest honors a scientist can achieve.

Circadian Clock Controls Sunflower Blooms, Optimizing for Pollinators

An internal circadian clock controls the distinctive concentric rings of flowering in sunflowers, maximizing visits from pollinators, a new study from plant biologists at the University of California, Davis, shows. The work was published Jan. 13 in eLife.

A sunflower head is made up of hundreds of tiny florets. Because of the way sunflowers grow, the youngest florets are in the center of the flower face and the most mature at the edges, forming a distinctive spiral pattern from the center to the edge.

Rice Breeding Breakthrough to Feed Billions

An international team has succeeded in propagating a commercial hybrid rice strain as a clone through seeds with 95% efficiency. This could lower the cost of hybrid rice seed, making high-yielding, disease resistant rice strains available to low-income farmers worldwide. The work was published Dec. 27 in Nature Communications.